Prints options for a wrapper or a certain preprocessing method

which_options(preprocess, method = NULL)

Arguments

preprocess

Possible preprocessing: 'oversample', 'clean_noise', 'instance_selection', 'feature_selection', 'normalize', 'discretize', 'space_transformation', 'clean_outliers', 'impute_missing', 'clean_noise'

method

For the preprocessing method

Value

Prints valid preprocessings for the selected wrapper or options for a given preprocessing

Examples

which_options("oversample")
#> Possible methods are: 'RACOG', 'wRACOG', 'PDFOS', 'RWO', 'ADASYN', 'ANSMOTE', 'SMOTE', 'MWMOTE', 'BLSMOTE', 'DBSMOTE', 'SLMOTE', 'RSLSMOTE'
which_options("clean_noise", method = "edgeWeight")
#> For more information do: ?NoiseFiltersR::EWF #> Parameters for edgeWeight are: #> * threshold: Number between 0 and 1. Limit between good and suspicious instances #> Default value: 0.25 #> * action: Strategy to treat noisy instances: 'remove', 'hybrid' #> Default value: remove
which_options("clean_noise", method = "ENG")
#> For more information do: ?NoiseFiltersR::ENG #> Parameters for ENG are: #> * graph: Character indicating the type of graph to be constructed. It can be #> chosen between 'GG' (Gabriel Graph) and 'RNG' (Relative #> Neighborhood Graph #> Default value: GG
which_options("impute_missing", method = "gibbs_sampling")
#> For more information do: ?mice::mice #> Parameters for gibbs_sampling are: #> * imputation: Imputation method (one of the above or a vector containing as much as #> number of columns in dataset): #> pmm: Predictive mean matching #> midastouch: Weighted predictive mean matching #> sample: Random sample from observed values #> cart: Classification and regression trees #> rf: Random forest imputations #> mean: Unconditional mean imputation #> norm: Bayesian linear regression #> norm_nob: Linear regression ignoring model error #> norm_boot: Linear regression using bootstrap #> norm_predict: Linear regression, predicted values #> quadratic: Imputation of quadratic terms #> ri: Random indicator for nonignorable data #> logreg: Logistic regression #> logreg_boot: Logistic regression with bootstrap #> polr: Proportional odds model #> polyreg: Polytomous logistic regression #> lda: Linear discriminant analysis #> 2l_norm: Level-1 normal heteroskedastic #> 2l_lmer: Level-1 normal homoscedastic, lmer #> 2l_pan: Level-1 normal homoscedastic, pan #> 2lonly_mean: Level-2 class mean #> 2lonly_norm: Level-2 class normal #> 2lonly_pmm: Level-2 class predictive mean matching #> Default value: pmm #> * num_iterations: Desired number of iterations in the Gibbs sampling #> Default value: 5