Missing values imputation wrapper
impute_missing(dataset, method, exclude = NULL, ...)
dataset | we want to impute missing values on |
---|---|
method | selected method of missing values imputation |
exclude |
|
... | Further arguments for |
The treated dataset (either with noisy instances replaced or erased)
library("smartdata") data(africa, package = "Amelia") data(nhanes, package = "mice") data(ozone, package = "missMDA") data(vnf, package = "missMDA") data(orange, package = "missMDA") data(sleep, package = "VIM") super_nhanes <- impute_missing(nhanes, "gibbs_sampling") super_nhanes <- impute_missing(nhanes, "gibbs_sampling", exclude = "chl") # Use a different method for every column impute_methods <- c("pmm", "midastouch", "norm_nob", "norm_boot") super_nhanes <- impute_missing(nhanes, "gibbs_sampling", imputation = impute_methods) super_nhanes <- impute_missing(nhanes, "central_imputation")#>#> #>#>#> #>super_africa <- impute_missing(africa, "knn_imputation") # Execute knn imputation with non default value for k super_africa <- impute_missing(africa, "knn_imputation", k = 5) super_africa <- impute_missing(africa, "expect_maximization", exclude = "country") super_africa <- impute_missing(africa, "rf_imputation", num_iterations = 15, num_trees = 200, bootstrap = FALSE)#> missForest iteration 1 in progress...done! #> missForest iteration 2 in progress...done! #> missForest iteration 3 in progress...done! #> missForest iteration 4 in progress...done!# Examples of calls to 'PCA imputation' with wholly numeric datasets # \donttest{ super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5, imputation = "EM")#> Warning: Stopped after 1000 iterationssuper_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5, imputation = "Regularized")#> Warning: Stopped after 1000 iterations# } super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5, imputation = "Regularized", random_init = TRUE)#> Warning: Stopped after 1000 iterations# Examples of calls to 'MCA imputation' with wholly categorical datasets # \donttest{ super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5, imputation = "EM") super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5, imputation = "Regularized") # } super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5, imputation = "Regularized", random_init = TRUE) # Examples of calls to 'FAMD imputation' with hybrid datasets # \donttest{ super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5, imputation = "EM", exclude = c("Ne12", "Vx15")) super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5, imputation = "Regularized") # } super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5, imputation = "Regularized", random_init = TRUE) # Examples of hotdeck, iterative robust and reggresion imputations super_sleep <- impute_missing(sleep, "hotdeck") super_sleep <- impute_missing(sleep, "iterative_robust", initialization = "median", num_iterations = 1000) super_sleep <- impute_missing(sleep, "regression_imputation", formula = Dream+NonD~BodyWgt+BrainWgt) # Examples of adaptative shrinkage imputation super_ozone <- impute_missing(ozone, "ATN", sigma = 2.2) super_ozone <- impute_missing(ozone, "ATN", lambda = 0.025, gamma = 2.5) super_ozone <- impute_missing(ozone, "ATN", tune = "SURE")