Missing values imputation wrapper

impute_missing(dataset, method, exclude = NULL, ...)

Arguments

dataset

we want to impute missing values on

method

selected method of missing values imputation

exclude

character. Vector of attributes to exclude from the missing values treatment

...

Further arguments for method

Value

The treated dataset (either with noisy instances replaced or erased)

Examples

library("smartdata") data(africa, package = "Amelia") data(nhanes, package = "mice") data(ozone, package = "missMDA") data(vnf, package = "missMDA") data(orange, package = "missMDA") data(sleep, package = "VIM") super_nhanes <- impute_missing(nhanes, "gibbs_sampling") super_nhanes <- impute_missing(nhanes, "gibbs_sampling", exclude = "chl") # Use a different method for every column impute_methods <- c("pmm", "midastouch", "norm_nob", "norm_boot") super_nhanes <- impute_missing(nhanes, "gibbs_sampling", imputation = impute_methods) super_nhanes <- impute_missing(nhanes, "central_imputation")
#> Registered S3 method overwritten by 'xts': #> method from #> as.zoo.xts zoo
#> Registered S3 method overwritten by 'quantmod': #> method from #> as.zoo.data.frame zoo
super_africa <- impute_missing(africa, "knn_imputation") # Execute knn imputation with non default value for k super_africa <- impute_missing(africa, "knn_imputation", k = 5) super_africa <- impute_missing(africa, "expect_maximization", exclude = "country") super_africa <- impute_missing(africa, "rf_imputation", num_iterations = 15, num_trees = 200, bootstrap = FALSE)
#> missForest iteration 1 in progress...done! #> missForest iteration 2 in progress...done! #> missForest iteration 3 in progress...done! #> missForest iteration 4 in progress...done!
# Examples of calls to 'PCA imputation' with wholly numeric datasets # \donttest{ super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5, imputation = "EM")
#> Warning: Stopped after 1000 iterations
super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5, imputation = "Regularized")
#> Warning: Stopped after 1000 iterations
# } super_orange <- impute_missing(orange, "PCA_imputation", num_dimensions = 5, imputation = "Regularized", random_init = TRUE)
#> Warning: Stopped after 1000 iterations
# Examples of calls to 'MCA imputation' with wholly categorical datasets # \donttest{ super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5, imputation = "EM") super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5, imputation = "Regularized") # } super_vnf <- impute_missing(vnf, "MCA_imputation", num_dimensions = 5, imputation = "Regularized", random_init = TRUE) # Examples of calls to 'FAMD imputation' with hybrid datasets # \donttest{ super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5, imputation = "EM", exclude = c("Ne12", "Vx15")) super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5, imputation = "Regularized") # } super_ozone <- impute_missing(ozone, "FAMD_imputation", num_dimensions = 5, imputation = "Regularized", random_init = TRUE) # Examples of hotdeck, iterative robust and reggresion imputations super_sleep <- impute_missing(sleep, "hotdeck") super_sleep <- impute_missing(sleep, "iterative_robust", initialization = "median", num_iterations = 1000) super_sleep <- impute_missing(sleep, "regression_imputation", formula = Dream+NonD~BodyWgt+BrainWgt) # Examples of adaptative shrinkage imputation super_ozone <- impute_missing(ozone, "ATN", sigma = 2.2) super_ozone <- impute_missing(ozone, "ATN", lambda = 0.025, gamma = 2.5) super_ozone <- impute_missing(ozone, "ATN", tune = "SURE")