Outliers cleaning wrapper
clean_outliers(dataset, method, ...)
| dataset | we want to clean outliers of |
|---|---|
| method | selected method to clean outliers. Possibilities are:
|
| ... | further arguments for the method |
The treated dataset (either with outliers replaced or erased)
#> #> #> #> #> #>#> #> #>#>super_iris <- clean_outliers(iris, method = "multivariate", type = "quan") # Use mean as method to substitute outliers super_iris <- clean_outliers(iris, method = "univariate", type = "z", prob = 0.9, fill = "mean") # Use median as method to substitute outliers super_iris <- clean_outliers(iris, method = "univariate", type = "z", prob = 0.9, fill = "median") # Use chi-sq instead of z p-values super_iris <- clean_outliers(iris, method = "univariate", type = "chisq", prob = 0.9, fill = "median") # Use interquartilic range instead (lim argument is mandatory when using it) super_iris <- clean_outliers(iris, method = "univariate", type = "iqr", lim = 0.9, fill = "median")