Noise cleaning wrapper
clean_noise(dataset, method, class_attr = "Class", ...)
dataset | we want to clean noisy instances on |
---|---|
method | selected method of noise cleaning |
class_attr |
|
... | Further arguments for |
The treated dataset (either with noisy instances replaced or erased)
library("smartdata") data(iris0, package = "imbalance") super_iris <- clean_noise(iris, method = "AENN", class_attr = "Species", k = 3) super_iris <- clean_noise(iris, "GE", class_attr = "Species", k = 5, relabel_th = 2) super_iris <- clean_noise(iris, "HARF", class_attr = "Species", num_folds = 10, agree_level = 0.7, num_trees = 5) # \donttest{ super_iris <- clean_noise(iris0, "TomekLinks") super_iris <- clean_noise(iris, "hybrid", class_attr = "Species", consensus = FALSE, action = "repair") super_iris <- clean_noise(iris, "Mode", class_attr = "Species", type = "iterative", action = "repair", epsilon = 0.05, num_iterations = 200, alpha = 1, beta = 1) super_iris <- clean_noise(iris, "INFFC", class_attr = "Species", consensus = FALSE, prob_noisy = 0.2, num_iterations = 3, k = 5, threshold = 0)#>#>#>super_iris <- clean_noise(iris, "IPF", class_attr = "Species", consensus = FALSE, num_folds = 3, prob_noisy = 0.2, prob_good = 0.5, num_iterations = 3)#>#>#>super_iris <- clean_noise(iris, "ORBoost", class_attr = "Species", num_boosting = 20, threshold = 11, num_adaboost = 20)#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>super_iris <- clean_noise(iris, "PF", class_attr = "Species", prob_noisy = 0.01, num_iterations = 5, prob_good = 0.5, theta = 0.8)#>#>#>#>#>super_iris <- clean_noise(iris, "C45robust", class_attr = "Species", num_folds = 5)#>#>#># }